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Theory of interband tunnelling in crystals with phonons

P N Argyres and S Sfiat
Department of Physics, Northeastern University, Boston, MA 02115, USA

Received 8 September 1992

Abstract. A genecral theory is presented for the interband wanelling probability of
electrons in a crystal in the presence of phonons and a strong electric field, for both the
phonon-assisted and the phonon-modified-Zener tunnelling. For the case of tunnelling
from 2 Mlly occupied band the dependence of the tunnelling rate on the electric field
is shown in both cases to exhibit a steady term and some osciilatory terms. Similar
oscillatory behaviour has been measured recently in semiconducting superlattices.

With the advent of submicron devices and semiconducting superlattices there is
currently a great deal of interest in the study of all quantum mechanical aspects
of the motion of ¢lectrons in crystals in a strong electric field [1-13]. We examine
here the basic theory of interband tunnelling in a crystal in the presence of phonon
scattering and a uniform and time-independent strong electric field. We base this
theory on the equation of motion of the one-electron density operator for this system
that has recently been derived [14] and the familiar Bloch representation for the
crystal. 'We find that the interband tunnelling rate depends on the electric field
through a steady term and some oscillatory terms. Such oscillatory behaviour has
recently been observed [15] in semiconducting superiattices.

The interaction energy of an electron with an arbitrarily strong, uniform and
time-independent electric field E is given in the scalar gauge by

H=—eE-r=-F-r. ()

The crystal Hamiltonian K, determines the Bloch states |nk) of band n and
wavevector k with energies e2(k). The effects of the electric field on the motiocn
of the electron can be separated into intraband and interband processes as described
by the matrix elements of (1) in the Bloch representation. Thus we have [6, 16]

(nklr|n'k’) = 16,108 / Ok + Ry (k)6p 4 @)

where

8U fk(r)

Rnn’(k) = EIJL d31,, (T) (3)

with U, . (r) being the periodic part of the Bloch wavefunction {r|nk} normalized in
the unit cell of volume Q. In (2) and in the following 8/8k is a formal derivative,
as discussed in detail elsewhere [17]. Now we combine the intraband elements of H,
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with those of H to form the Hamiltonian H; to be treated exactly, and we treat the
interband elements of H; as a perturbation H' [18], i.e. we write

H=H 4+ H;= H,+ H' )]
where

{nk|Holn'k") = 8, il€,(K)6p g0 — iF - (B8 /OK)] ®)

{nk|H'|n'K) = Hyq(k)8y jo = —F » B (k)(1= 60 )b3epe - (6)

with €,(k) = (k) ~ F - R, (k). Thus, the intraband effects of E appear as
‘acceleration’ whereby the crystal momentum is increased at a constant rate F. The
effects of the phonons are given by the electron—phonon interaction for each electron

V=3 v,(b, +bL). )
g

Here q¢ = (g, ) denotes the phonon states of wavevector g, of branch and
polarization index A, with —q standing for (—q,A) and of energies w, = w_,.
The operators b, (b}) represent the destruction (creation) operators for the phonons
in the states g and they satisfy the usual boson commutation relations. The electron
operator v, describes the interaction of an electron with the vibrating atoms of the
aystal, and it must be such that v_, = v].

We have found it possible to avoid the introduction of special one-electron states,
such as the Stark—Wannier or Houston states, by formulating the problem on the
basis of the equation of motion of the one-electron density operator and by using
only the familiar Bloch states of the unperturbed crystal.

The equation of motion for the electrons that takes into account the exchange
effects can be derived from the equation of motion of the coupled system of electrons
plus phonons. For weak electron—phonon interaction and under conditions of thermal
equilibrium for the phonons it has been shown recently [14] that the one-electron
density operator is determined by the equation (with fi = 1)

o o0y =-iLp(t)+ [ 4r Cli~ln() ®
where

Lo(#) = [H, o(8)] = [Hy+ H', ()] = (Ly + Lo(t) ©
and
Clt — rlo(r)} = glglwg + 10+ ) expline, (£~ 7]

X {epl~iL(1 — [ - p(r)]elp(r), v,) + Ha. 10)
Here

N, = [exp(Bu,) — 1] (1)
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is the average number of phonons ¢ at temperature (kpB)~!, while the terms
n = +1,~1 describe the scattering of electrons due to emission and absorption
of phonons, respectively, in the Born approximation. The effects of the electron
exchange on the collisions with the phonons are described by the ‘exclusion factor’
[1 = p(7)], while the effects of the electric field are given without any approximation
by the time evolution Liouville operator exp(—iLt) = exp[—i( L, -+ L'){].

Equation (8) for p(t) is correct to all orders in A’'. From equation (6) it
is clear that the operator H' induces interband transitions even in the absence
of phonons (Zener wnnelling), a much studied process [18-21). The presence of
phonons is expected on physical grounds to have two different kinds of effect on
the interband tunnelling. First, the electron—phonon interaction will cause interband
transitions (phonon-assisted tunnelling). Second, it will modify the Zener tunnelling
mentioned above, because the collisions will affect the motion of the electron before
and after it tunnels due to H’ (phonon-modified-Zener mnnelling). There are, of
course, additional effects due 1o the interference of these two tunnelling mechanisms.
Here we shall consider only the simple case of the initia! tunnelling probability from
a fully occupied band to an unoccupied band in the presence of the electric field and
the phonons.

We first note that in the equation of motion (8) for p(¢) the second term includes
the description of interference effects between the Zener tunnelling and the phonon
scattering mechanisms. As we mentioned above, we shall ignore here all effects that
are of order H'V? or higher in the cross products of /' and V. We thus have for

e(t)

S0 = (Lo + Do)+ [ ar Gt = ip()) (12)
where

Gy = C{L — Ly} (13)

ie. C; is identical to C as given by (10) except that the time evolution Liouville
operator exp(—iLt) A is replaced by exp(—iL,t) A = exp(—iH,t) A exp(iHt), where
Hy, as given by (5), includes the intraband accelerating effect of the electric field
exactly, This describes the tunnelling effects discussed above, since the first term in
(12) includes all the effects of E and the second term gives aff the effects of scattering
in the lowest order in the electron—-phonon interaction in the absence of any Zener
tunnelling.

For the interband wtunnelling phenomena we are interested in evaluating the
probability of finding an electron in the state |nk} at time t, ie. {nk|p(t)ink) =
fn (R, 1), if we know that at ¢ = O the electrons were occupying fully a different band
Mgy LE.

p(0) = 37 Ingh') (k. (14)

kl

Since the spin is conserved for all processes considered here, it is suppressed. Clearly
we have trp(f) = trp(0) = N,, the number of electrons.
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For the phonon-assisted tunnelling probability we thus have, solving (12) with
L' = 0 up to first order in C; and using (13) and (14),

i 1}
FP(k,t) = (“H/ﬂ‘ d¢, exp[—iLly(t — tl)]‘L dt, Colt) — 25| exp(~iLyt; ) p(0)]|nk)

t
= ZZ Z [Nq'i'%(l'*' ﬂ)ll/u dr exP(i’?wq“')(ﬂk(—t)wq(r)!nuk‘)[z

W g =%l
(15)
where we have introduced the notation
A(2) = exp(iLyt) A = exp(iHyt) A exp(—iH,t) (16)
and
k() =k + Ft (17)

modulo an appropriate reciprocal lattice vector so that k(t) is always a vector within
the Brillouin zone. Now and in the following we choose once and for all the direction
of E = F'[e to be along any one of the reciprocal lattice vectors. The Brillouin zone
can then be chosen so that the end points of k(t) differ by the shortest reciprocal
lattice vector «[[F and thus denote the same state. Thus &(¢) is a periodic function
of ¢ with period T = «/F, the period of Bloch oscillations. The evaluation of the
matrix element in (15) can be carried out with the use of the identity

{nk]A()In'k") = (nk(1)| Aln'K/(2)) exp (lfu dr {e,[k({7)] - fank'(T)]}) (18)

which follows from (5).

This tunnelling probability to state [nk) at time ¢ starting from a full band n,
simplifies if we consider the average tunnelling rate to band n for a large number of
Bloch periods T = «/ F. We have thus found that the average number of electrons
per unit time and unit volume that tunne] to the empty band n from the full band
ng is

2 1 i '
WR= Fap D X [Nt 5+ 0] [ fén

g =t
xf2 +oo A("J)( E k’)
x [ dp| M, (q,pky, k0P (1425 cos | mERRe D 2 Tl
X[ o an ks P [1425 Lk
(19)
where
x/2

Mv(:};)o(Q:'P,k_UkiL) = f

-x/

zdp’(n,p + 2,k v, ing, p'L R )

-’ p'
X exp (%j{; dp” [e,(p+ 2", kL) — €n (P", KL ) + an]) (20)

1 kf2
'&Stﬂfzg(Q:k.L:k:L) = p /de [en(prky) ~ eno(Pak’J_) + an]' (21)

-k
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Here we have written k = (p,k, ), where &k, is the component of & L F, and the
two terms n = +1,-1, describe the tunnelling due to emission and absorption of
phonons respectively.

For the Zener wnnelling probability for this case of a full band n, the phonons
do not modify the simple interband tunnelling due to H’ (in the approximation of
our theory), and thus we get, from (12) with C; = 0, up to second order in L',

SO ke, t) = (nkl(—i)? fo dt, exp(—iLo(t — 1,)]
x ju dt, L' exp[—iLo(t; — 1)1 L exp(=iLyty) p(0)|nk)

2

= l/{: dr B, (R(~1), )

2

= ./: dr F-R,,, [k(r—t)]exp (./: dr' e, [R(r — i)]) (22)

where we have made use of (6), (16) and (18) and ¢, (k) = €,(k) — ¢, (k). An

analysis of this expression, similar to that of f,(f’)(k,t) (15) for a large number of
Bloch periods, yields for the average number of electrons per unit tme and unit
volume that tunnel to the empty band n from the full band n,

2F Yoo A (k)
(z) — 2 2 Ty 1
Wnnn - (211.)3 fd k.l. IMnnn(kJ.)l (1 + Zg:dcos(m—l*"/u )) (23)
where
kf2 i ke
M“o(kjh) = j dk, R, (k. k) exp (—/ dp cMo(p, kl)) 24)
-5/2 F Jy

and R is the component of R in the direction of E. The first term in (23) is
the standard result [18-19] obtained on the basis of various approximations. The
oscillatory terms were obtained [20] some time ago for the first ime on the basis of
the Stark representation, ie. the one that diagonalizes H,.

Expressions (19) and (23) for W%, and W2, as functions of the electric field
consist of a steady term and some oscillatory terms, which clearly arise from the
intraband Bloch oscillations. Similar oscillations have been detected experimentally
recently [15] in semiconducting superlattices. Evaluation of W{&, and W3 for
typical energy bands will be published elsewhere.

Most tunnelling experiments in ¢rystals, as in a p-n tunnel diode, are performed
under conditions such that only the initial tunnelling rate we discussed above is
believed to be required [21]. However, with the new mesoscopic structures it will
probably be necessary to consider the tunnelling processes from partially filled bands
and under conditions where the depletion and replenishment of the initial states, due
to the tunnelling processes, become important. These situations can be studied by
constructing kinetic equations for the occupation probabilities from the basic equation
of motion (8). We plan to discuss these and some elementary applications elsewhere.
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