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Theory of interband tunnelling in crystals with phonons 
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Received 8 September 1992 

AbsmL A general theory is presented for lhe interband tunnelling probability of 
elecuons in a q l a l  in the presence of phonons and a stmng electric field, for both the 
phonon-assisted and the phonon-modified-Zener tunnelling. For the case of tunnelling 
h m  a hlly mupied band the dependence of the tunnelling rate on the electric field 
is &own in bah cases 10 ahibit a steady term and mame ocillatory terms Similar 
oscillatory behaviour bas been measured recently in semiconducting supedaltioes. 

With the advent of submicron devices and semiconducting superlattices there is 
currently a great deal of interest in the study of all quantum mechanical aspects 
of the motion of electrons in crystals in a strong electric field 11-13]. We examine 
here the basic theory of interband tunnelling in a crystal in the presence of phonon 
scattering and a uniform and time-independent strong electric field. We base this 
theory on the equation of motion of the oneelectron density operator for this system 
that has recently been derived 1141 and the familiar Bloch representation for the 
crystal. We 6nd that the interband tunnelling rate depends on the electric field 
through a steady term and some oscillatory terms. Such oscillatory behaviour has 
recently been observed [U] in semiconducting superlattices. 

The interaction energy of an electron with an arbitrarily strong, uniform and 
time-independent electric field E is given in the scalar gauge by 

H ,  = - e E . +  = -F ' 7 .  (1) 

The crystal Hamiltonian H, determines the Bloch states Ink) of band n and 
waveveztor k with energies ~ i ( k ) .  The effects of the electric field on the motion 
of the electron can he separated into intraband and interband processes as described 
by the'matrix elements of (1) in the Bloch representation. Thus we have 16,161 

(aklrln'h') = i6nn,a6hkt/ak + Bnn,(k)6h,h, (2) 

where 

with Unk(~) being the periodic part of the Bloch wavefunction (TITLE) normalized in 
the unit cell of volume 51,. In (2) and in the following is a formal derivative, 
as discussed in detail elsewhere [17J Now we combine the intraband elements of H ,  
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with those of H ,  to form the Hamiltonian H, to be treated exactly, and we treat the 
interband elements of H, as a perturbation H' (IS], i.e. we write 

P NArgyres and S Sfrar 

H = H , + H , =  H u + H '  (4) 

(nkIH,ln'k') = 6,,t[e,(k)6k,k, - iF . (ZJbkkt/ak)] 

where 

(5 )  

(nkIJY'In'k') = Hh,,(h)S,,k, = - F .  Rnn,(k)(l - 6nnc)6,,,, (6) 

with c , (k)  = e(&) - Fe Rmn(&). Thus, the intraband effects of E appear as 
'accekmtion' whereby the aystal momentum is increased at a cnnstant rate F. The 
effects of the phonons are given by the electron-phonon interaction for each electron 

Here. q = ( q , X )  denotes the phonon states of wavevector q,  of branch and 
polarization index A, with -q standing for ( - q , X )  and of energies wq = w - ~ .  
The operators bp(bi )  represent the destruction (creation) operators for the phonons 
in the states q and they satisfy the usual boson commutation relations. The electron 
operator .up describes the interaction of an electron with the vibrating atoms of the 
crystal, and it must be such that vWP = vi. 

We have found it possible to avoid the introduction of special one-electron states, 
such as the Stark-Wannier or Houston states, by formulating the problem on the 
basis of the equation of motion of the oneelectron density operator and by using 
only the familiar Bloch states of the unperturbed crystal. 

The equation of motion for the electrons that takes into account the exchange 
effects can be derived from the equation of motion of the coupled system of electrons 
plus phonons. Fbr weak electron-phonon interaction and under conditions of thermal 
equilibrium for the phonons it has been shown recently [14] that the one-electron 
density operator is determined by the equation (with tr = 1) 

t 

(8) 
d 
- p ( t )  = -iLp(t) + J d t  C[Z - TIp(T) ]  
dt U 

where 
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k the average number of phonons q at temperature (leB@)-', while the terms 
q = +I,-1 describe the scattering of electrons due to emission and absorption 
of phonons, respectively, in the Bom approximation. The effects of the electron 
exchange on the collisions with the phonons are described by the 'exclusion factor' 
11 - p ( ~ ) ] ,  while the effects of the electric field are given without any approximation 
by the time evolution LiouviUe operator exp(-iLt) = exp[-i(L, + L')1]. 

Equation (8) for p ( t )  is correct to all orders in H'. From equation (6) it 
k clear that the operator H' induces interband transitions even in the absence 
of phonons (Zener mnnelling), a much studied process [18-211. The presence of 
phonons is expected on physical grounds to have two different kinds of effect on 
the interband tunnelling. First, the electron-phonon interaction will cause interband 
transitions @honon-asskted tunnelling). Second, it will modify the Zener tunnelling 
mentioned above, because the collisions will affect the motion of the electron before 
and after it tunnels due to H' @honon-modifid-Zener tunnelling). There are, of 
course, additional effects due to the interference of these two tunnelling mechanisms. 
Here we shall consider only the simple case of the inilia1 tunnelling probability from 
a fully occupied band to an unoccupied band in the presence of the electric field and 
the phonons. 

We first note that in the equation of motion (S) for p( 1 )  the second term includes 
the description of interference effects between the Zener tunnelling and the phonon 
scattering mechanisms. As we mentioned above, we shall ignore here all effects that 
are of order H'VZ or higher in the cross products of H' and V. We thus have for 
P ( t )  

t 

(12) 
d 
- p ( t )  = -i( Lo + L ' ) p ( t )  + J d r  C"[t - TIp(T) ]  
dt U 

where 

c, = C{ L - L"} (13) 

ie. C, is identical to C as given by (10) except that the time evolution Liouville 
operator exp(-iLt)A is replaced by exp(-iL,t)A = exp(-iHut)Aexp(iHot), where 
H,,, as given by (S), includes the intraband accelerating effect of the electric field 
exactly. This describes the tunnelling effects discussed above, since the first term in 
(12) includes all the effects of E and the second term gives aU the effects of scattering 
in the lowest order in the electron-phonon interaction in the absence of any Zener 
tunnelling. 

For the interband tunnelling phenomena we are interested in evaluating the 
probability of finding an electron in the state Ink) at time 1, i.e. (nklp( t ) lnk)  = 
f , , ( k , t ) ,  if we h o w  that at t = 0 the electrons were occupying fully a different band 
no, ie. 

Since the spin is conserved for all processes considered here, it is suppressed. Clearly 
we have trp(l) = trp(0) = Ne,  the number of electrons. 
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For the phononarsiFled nmnelhg probability we thus have, solving (12) with 
L' = 0 up to first order in CO and using (13) and (14), 

t :e 

f,?(k,t) = (nkl/ atl exp[-ilo(t - tl)l dtZCuIll - t ~ I e x ~ ( - i ~ ~ t ~ ) ~ ( O ) l l n ~ )  

= cc [ N , + ~ ( l + v ) l l ~  d7 exp( i vw ,~ ) (nk ( - t ) l ~ , (~ ) I~ "~ ' ) l 2  

(15) 

(16) 

(17) 

U 0 
t 

Ir' q v=fl 

where we have introduced the notation 

act) = exp(iL,t)A = exp(iHot)Aexp(-iHut) 

E ( t )  = k + Ft 

and 

modulo an appropriate reciprocal lattice vector so that k ( t )  is always a vector within 
the Brillouin mne. Now and in the following we choose once and for all the direction 
of E = F/e  to be along any one of the reciprocal lattice vectors. The Brillouin mne 
can then be chosen so that the end points of k( t )  differ by the shortest reciprocal 
lattice vector K(IF and thus denote the same state. Thus h ( l )  is a periodic function 
of t with period T = K / F ,  the period of Bloch oscillations. The evaluation of the 
matrix element in (15) can be carried out with the use of the identity 

(nkla(t)ln'E') = (nk(t)IAln'k'(t))exp ( i i  d~ {€,[k(T)] - C, ,#[k ' (T)] } )  

which follows from (5). 
This tunnelling probability to state Ink) at time t starting from a full band nu 

simplifies if we consider the average tunnelling rate to band n for a large number of 
Bloch periods T = n/ F. We have thus found that the average number of electrons 
per unit time and unit volume that tunnel to the empty band n from the full band 
nu is 

1 

(18) 
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Here we have witten h = ( p , k , ) ,  where k, is the component of k I F, and the 
two term r~ = +l,-1, describe the tunnelling due to emission and absorption of 
phonons respectively. 

For the Zener runnerring probability for this case of a full band no the phonons 
do not modify the simple interband tunnelling due to H‘ (in the approximation of 
our theory), and thus we get, from (12) with C, = 0, up to second order in L‘, 

fp)(h,t) = (nkl(-i)’/ d t ,  exp(-iL,,(t - tl)] 
i 

0 

x dt, L‘exp[-iLO(t, - t,)]L’exp(-iL,t,)p(O)lnk) 

where we have made use of (6), (16) and (18) and enno(k) = e , , (k)  - eno(h) .  An 
analysis of this expression, similar to that of fp’(k,t) (15) for a large number of 
BIoch periods, yields for the average number of electrons per unit time and unit 
volume that tunnel to the empty band n &om the full band n,, 

where 

k. 
M,,&kl) = J 4 1 2  d k  R,,,(k,,k,)exp (;1 dP€**&LL)) (24) 

and R is the component of R in the direction of E. The first term in (23) is 
the standard result [18-191 obtained on the basis of various approximations. The 
oscillatory terms were obtained [20] some time ago for the first time on the basis of 
the Stark representation, ie. the one that diagonalizes H,,. 

Ekpressions (19) and (23) for I&), and WPR’, as functions of the electric field 
consist of a steady term and some oscillatory terms, which clearly arise from the 
intraband Bloch oscillations. Similar oscillations have been detected experimentally 
recently [U] in semiconducting superlattices. Evaluation of WiK)o and W&l0 for 
typical energy bands will be published elsewhere. 

Most tunnelling experiments in crystals, as in a p n  tunnel diode, are performed 
under conditions such that only the initial tunnelling rate we discussed above is 
believed to be required [Zl]. However, with the new mesoscopic structures it will 
probably be necessary to consider the tunnelling processes from partially filled bands 
and under conditions where the depletion and replenishment of the initial states, due 
to the tunnelling processes, become important. These situations can be studied by 
constructing kinetic equations for the occupation probabilities from the basic equation 
of motion (8). We plan to discuss these and some elementary applications elsewhere. 
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